Effect of farnesyl transferase inhibitor R115777 on the growth of fresh and cloned myeloma cells in vitro.
نویسندگان
چکیده
Ras gene mutations occur in 30% to 40% of patients with multiple myeloma (MM), and farnesylation is the first and most important step in the posttranslational modification of Ras proteins. R115777 is a newly synthesized potent farnesyl transferase inhibitor (FTI) and has recently demonstrated significant antitumor activities in vitro and in vivo. Therefore, we examined the effect of R115777 on the growth of fresh and cloned myeloma cells in vitro. R115777 inhibited the growth of fresh and cloned myeloma cells dose dependently, and effects were not dependent on the status of N-Ras mutation in fresh myeloma cells. Flow cytometric analysis using annexin V and 7-aminoactinomycin D (7AAD) showed that R115777 induced apoptosis of 2 of 3 myeloma cell lines at a concentration of 1.0 x 10(-8) M. R115777 appears to be a potent inducer of apoptosis, and its effects depend on the status of Ras mutation in cloned myeloma cells but not on the status of N-Ras mutation in fresh myeloma cells. This is the first report that demonstrates the relationship between the N-Ras mutation in fresh myeloma cells and the effect of R115777. R115777 might have some benefit in the treatment of myeloma patients.
منابع مشابه
R115777 induces Ras-independent apoptosis of myeloma cells via multiple intrinsic pathways.
Ras activation is frequently observed in multiple myeloma either by mutation or through interleukin-6 receptor signaling. Recently, drugs designed to inhibit Ras have shown promise in preclinical myeloma models and in clinical trials. In this report, we characterize the pathways by which the clinically tested farnesyl transferase inhibitor (FTI) R115777 induces apoptosis in multiple myeloma cel...
متن کاملEfficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematologic malignancies.
We investigated the clinical activity of the farnesyl transferase inhibitor R115777 in 22 patients with chronic myelogenous leukemia (CML) in chronic, accelerated, or blastic phase and in 8 patients with myelofibrosis (MF) and 10 patients with multiple myeloma (MM). R115777 was administered at 600 mg orally twice daily for 4 weeks every 6 weeks. Seven patients with CML (6 in chronic phase, 1 in...
متن کاملCharacterization of a R115777-resistant human multiple myeloma cell line with cross-resistance to PS-341.
The farnesyl transferase inhibitor R115777 has been found to have clinical activity in diverse hematopoietic tumors. Clinical efficacy, however, does not correlate with Ras mutation status or inhibition of farnesyl transferase. To further elucidate the mechanisms by which R115777 induces apoptosis and to investigate drug resistance, we have identified and characterized a R115777-resistant human...
متن کاملEstablishment and characterization of acquired resistance to the farnesyl protein transferase inhibitor R115777 in a human colon cancer cell line.
R115777 (Zarnestra) is a farnesyl protein transferase inhibitor currently undergoing worldwide clinical trials. As acquired drug resistance may limit the efficacy of the drug, a model of acquired resistance has been established in vitro by continuous drug exposure of the human colon cancer cell line KM12. A stably resistant cell line possessing 13-fold resistance to R115777 was generated. The r...
متن کاملCharacterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro.
R115777 [(B)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)-methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone] is a potent and selective inhibitor of farnesyl protein transferase with significant antitumor effects in vivo subsequent to oral administration in mice. In vitro, using isolated human farnesyl protein transferase, R115777 competitively inhibited the farnesylation of lamin B a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 102 9 شماره
صفحات -
تاریخ انتشار 2003